Degrees of Categoricity on a cone via η-Systems
نویسندگان
چکیده
We investigate the complexity of isomorphisms of computable structures on cones in the Turing degrees. We show that, on a cone, every structure has a strong degree of categoricity, and that degree of categoricity is ∆α-complete for some α. To prove this, we extend Montalbán’s η-system framework to deal with limit ordinals in a more general way. We also show that, for any fixed computable structure, there is an ordinal α and a cone in the Turing degrees such that the exact complexity of computing an isomorphism between the given structure and another copy B in the cone is a c.e. degree in ∆α(B). In each of our theorems the cone in question is clearly described in the beginning of the proof, so it is easy to see how the theorems can be viewed as general theorems with certain effectiveness conditions.
منابع مشابه
The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملDegrees of Categoricity and the Hyperarithmetic Hierarchy
We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of Fokina, Kalimullin, and R. Miller to show that for every computable ordinal α, 0 is the degree of categoricity of some computable structure A. We show additionally that for α a computable successor ordinal, every degree 2-c.e. in and above 0 is a degree of categoricity. We further prove that every degree of c...
متن کاملCategoricity Spectra for Rigid Structures
For a computable structure M , the categoricity spectrum is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of M . If the spectrum has a least degree, this degree is called the degree of categoricity of M . In this paper we investigate spectra of categoricity for computable rigid structures. In particular, we give examples of rigid structures wi...
متن کاملDegrees of categoricity of computable structures
Defining the degree of categoricity of a computable structureM to be the least degree d for whichM is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 can be so realized, as can the degree 0.
متن کاملOn Optimality Conditions via Weak Subdifferential and Augmented Normal Cone
In this paper, we investigate relation between weak subdifferential and augmented normal cone. We define augmented normal cone via weak subdifferential and vice versa. The necessary conditions for the global maximum are also stated. We produce preliminary properties of augmented normal cones and discuss them via the distance function. Then we obtain the augmented normal cone for the indicator f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Log.
دوره 82 شماره
صفحات -
تاریخ انتشار 2017